H=-16t^2+480(20)+150

Simple and best practice solution for H=-16t^2+480(20)+150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+480(20)+150 equation:



=-16H^2+480(20)+150
We move all terms to the left:
-(-16H^2+480(20)+150)=0
We get rid of parentheses
16H^2-48020-150=0
We add all the numbers together, and all the variables
16H^2-48170=0
a = 16; b = 0; c = -48170;
Δ = b2-4ac
Δ = 02-4·16·(-48170)
Δ = 3082880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3082880}=\sqrt{64*48170}=\sqrt{64}*\sqrt{48170}=8\sqrt{48170}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{48170}}{2*16}=\frac{0-8\sqrt{48170}}{32} =-\frac{8\sqrt{48170}}{32} =-\frac{\sqrt{48170}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{48170}}{2*16}=\frac{0+8\sqrt{48170}}{32} =\frac{8\sqrt{48170}}{32} =\frac{\sqrt{48170}}{4} $

See similar equations:

| 3(x-2)=2(7-x) | | -2(w-3)=2w+22 | | 7x-9.4=11.6 | | 200x=250x-125 | | 6x+3.7=51.7 | | 4-2k+6k=12 | | 5n+5=145 | | S^3+6s^+18s+20=0 | | x/8+4=7* | | 12y+15y-9=180 | | 9(3y-2)=2y | | 9(3y-2)=y2 | | 5y-3+2=8y | | 2x/3=7x/10 | | 9(3y-2)=2 | | 10^(2x)=22 | | 5-6n=54 | | 6(1–4w)=-18 | | 6x-15=3(3x+5) | | -9(6+u)–2u=-10 | | 7–3(5t–10)=67 | | -7y+34=4(y+3) | | 8c+5(c–6)=9 | | j/2–14=18 | | 3+161/3*10=x | | 2c+7=2 | | 3=q-4 | | 3+161/3810=x | | 3x-1+5x=9 | | 10e+4/5=2 | | 0.2(10-5x=5x-16 | | 84y=7y |

Equations solver categories